Code: 20IT3601

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

MACHINE LEARNING TECHNIQUES (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.	
					Marks	
	UNIT-I					
1	a)	Define the following machine learning	L2	CO1	7 M	
		techniques with examples. (i) classification,				
		(ii) regression (iii) clustering				
	b)	Differentiate between Supervised,	L3	CO2	7 M	
		Unsupervised and Reinforcement learning				
		by use of suitable examples.				
	OR					
2	a)	Differentiate the following machine learning	L2	CO1	4 M	
		classification techniques with examples.				
		(i) Discrimination (ii) Prediction				
	b)	Credit card fraud detection problem: This	L3	CO2	10 M	
		problem includes modeling past credit card				
		transactions with the knowledge of the ones				
		that turned out to be a fraud. This model is				
		then used to identify whether a new				

		transaction is fraudulent or not. Our aim	
		here is to detect 100% of the fraudulent	
		transactions while minimizing the incorrect	
		fraud classifications.	
		Model this problem into regression	
		technique and then present its corresponding	
		functions.	
		UNIT-II	
3	a)	Explain the multiple linear regression L3 CO2 7 M	L
		objective function using method of least	
		squares error.	
	b)	Define the following performance functions L3 CO2 7 M	
		and then illustrate their specific	
		characteristics.	
		(i) R-Square,	
		(ii) Mean Square Error (MSE)	
		(iii) Root Mean Square Error (RMSE)	
		(iv) Mean Absolute Error (MAE)	
		OR	
4	a)	Find the equation of the regression line from L3 CO2 8 M	[
		the given data where price, (X- in rupees)	
		and Y as amount demanded.	
		Price (Rs) 10 12 13 12 16 13	
		Amount 40 38 43 45 37 43	
	1 \	demanded	<u> </u>
	b)	Find the means of X and Y variables and the L3 CO2 6 M	L
		coefficient of correlation between them	
		from the following two regression	
		equations: $2Y-X-50 = 0$, $3Y-2X-10 = 0$.	

	UNIT-III						
5	a)	Write and explain the expectation maximization algorithm.	L2	CO1	7 M		
	b)	Illustrate the similarity and differences between bagging and boosting model	L3	CO3	7 M		
		combination schemes.					
	OR						
6	a)	Explain the complete-link clustering technique.	L2	CO1	4 M		
	b)	Cluster the following eight points (with (x, y) representing locations) into three clusters: A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9) Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). The distance function between two points $a = (x1, y1)$ and $b = (x2, y2)$ is defined as $P(a, b) = x2 - x1 + y2 - y1 $ Use K-Means Algorithm to find the three cluster centers after the second iteration.	L3	CO3	10 M		
	UNIT-IV						
7	a)	Explain <i>multi-layer perceptron</i> network with neat diagram and then write its objective function.	L3	CO3	8 M		
	b)	Define <i>dimensionality reduction</i> . Design and explain how <i>autoassociator</i> network will work for dimensionality reduction.	L3	CO3	6 M		
	1	OR	I	1			

8	a)	Write backpropagation algorithm for	L3	CO3	7 M
		training a multilayer perceptron for			
		regression with K outputs.			
	b)	Explain how the multilayer perceptron that	L3	CO3	7 M
		solves the XOR problem with an example.			
		The hidden units and the output have the			
		threshold activation function with small			
		threshold value.			
		UNIT-V			
9	a)	Differentiate action and policy in	L4	CO4	7 M
		reinforcement learning.			
	b)	Interpret the steps involved in a typical	L4	CO4	7 M
		reinforcement learning algorithm.			
		OR			
10	a)	Write and explain the <i>on-policy version of</i> Q	L4	CO4	7 M
		learning.			
	b)	Define the temporal difference learning.	L4	CO4	7 M
		What is the difference between a			
		deterministic and stochastic policy?			